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A new method for assessing the mean grain size
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We re-analyze published data on ultrasonic inspection of a number of pure metals and
alloys involving a range of mean grain sizes (from 0.0125 mm to 0.3 mm). We show that
they may be described by one master curve graph consisting mainly of two distinct but
parallel linear segments. This means that our presentation clusters the data under study
into two distinct groups, each chracterized by its own generalized material constant. The
slope of the segments suggests the predominance of scattering other than Rayleigh’s, since
it is consistent with the second power law rather than the fourth. We argue that the
attenuation is likely to be due to multiple scattering, particularly since our generalized
material constants seem to be similar to the published stochastic scattering factors. The
master curve graph suggests a new fast and simple method for assessing the mean grain
size which may be carried out without recourse to standard specimens or measurements
other than those routinely carried out during ultrasonic inspection. As the range of
materials and grain sizes are in extensive use in industry the simple schedule proposed
should prove of substantial use in practical material evaluation and production process
control. C© 2000 Kluwer Academic Publishers

1. Introduction
It is accepted that the same features of microstructure
that dominate attenuation of ultrasonic waves also de-
termine mechanical properties of industrial materials.
For example, in polycrystalline metals the grain size
greatly influences both ultrasonic attenuation [1–4] and
material strength, ductility, toughness and formability
[5–7]. Since ultrasonic inspection is less expensive than
the destructive tests required to assess mechanical prop-
erties many analytical and experimental studies have
been directed at establishing whether and how features
of microstructure may be inferred from ultrasonic in-
spection data. As a result, a number of dimensionless
parameters have been proposed in the non-destructive
evaluation (NDE) literature to describe various atten-
uation regimes. These regimes are usually determined
by the magnitude of the ratio of the ultrasonic wave-
length to the mean size of inhomogeneity. There ap-
pears to be a broad consensus on what the regimes are,
but the thresholds which separate them appear to be ma-
terial dependent and what makes the traditional mod-
els even less practicable, they allow identification of
the mean grain size only if some elusive material con-
stants are known. Indeed, in most cases these cannot
be estimated analytically and are difficult to measure.
In the present paper we analyze published data pertain-

ing to different pure metals and alloys and arrive at a
somewhat unorthodox combination of variables, one
involving the rate of the attenuation change with fre-
quency. This choice of variables allows most published
data to be plotted on one master curve: This particular
curve had been arrived at via exploratory data analysis
which involved testing variousequivalentversions of
the piece-wise power law hypothesis. It allows acon-
venientdata visualisation, i.e. reduction in visual data
spread, and thus leads to smaller variance of residuals.
The master curve could be used to estimate the mean
size of the metal grain in a fast and inexpensive manner.

Apart from being of immense value in quality con-
trol, the universal relationships between the mean grain
size and ultrasonic parameters are of fundamental in-
terest. For example, it is well known that if a process
is self-similar, that is if a quantitative relationship be-
tween its characteristic variables is the same over a
wide range of scales, then it is of a power-type [8]. For
this reason, when a power-type relationship has been
found, and the presence oftwo such relationships, one
for each particular group of metals is confirmed below,
it is current scientific practice to ascertain experimen-
tally whether self-similarity is present as well. Even if
it is not experiments of this kind throw additional light
on the physical nature of the relationship.
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2. Background
Attenuationα is a widely used ultrasonic parameter. It
is measured in nepers/cm (or db/m) and represents a
relative energy loss experienced by an ultrasonic plane
wave per unit length of a solid sample. Many authors be-
lieve that in polycrystalline materials attenuation is due
mainly to scattering(reorientation and mode conver-
sion of energy) by the grains [1, 2] and precipitates [9].
Scattering results from interaction with material defects
comparable to one wavelength in size, e.g. grain bound-
aries. For this reason, scattering depends on size, shape,
orientation and anisotropy of the grains, the structure
and thickness of their boundaries as well as chemistry,
e.g. the presence of alloying materials or deposits. The
standard assumptions used when modeling grain scat-
tering are:

(i) the discontinuity of the grain boundary is of elas-
tic nature, so that there is no discontinuity of density;

(ii) an individual grain scatters as a sphere/cube/
cylinder;

(iii) the grains are randomly located and randomly
oriented, so that the bulk of material is elastically ho-
mogeneous and isotropic;

(iv) the number of grains is large;
(v) the scatter from individual grains is not coherent.

Using these assumptions, three major scattering
regimes have been identified (other, bridging, regimes
are occasionally mentioned as well). Their descrip-
tion in terms of dimensionless variables is presented
in Table I. We use standard notations:D is the diam-
eter of sphere equivalent to mean grain size,λ= v/ f
is the ultrasound wave length,f is the ultrasound fre-
quency andv is the speed of sound in the inspected
material.

The first regime in which the wave length is much
larger than the grain size is calledRayleighafter Lord
Rayleigh [10] who first described scatter of waves with
a large wavelength by a small sphere. The application
of Rayleigh’s formula obviously involves an additional
assumption:

(vi) the scattered energy is sufficiently small, so that
multiple scattering effects may be neglected.

The second regime is calledstochasticto indicate
that when the wave length is comparable to the grain
size the Huygens (spherical) wavelets which emanate
from the neighboring points on the incident plane wave
front travel through randomly oriented individual
grains. Thus they change their velocity in a random

TABLE I Three major scattering regimes.Ar , As and Ad are scat-
tering coefficients characterizing anisotropy and the average change in
elastic properties between grains

Scattering regime Validity range Dα

Rayleigh D
λ
¿ 1 Ar

D4

λ4

Stochastic D
λ
≈ 1 As

D2

λ2

Diffusion D
λ
À 1 Ad

manner and arrive at the receiver with randomly dis-
tributed phases. The third regime is calleddiffusionto
indicate that when the wave length is small a cycle of the
ultrasound wave scatters from many grain boundaries
within a unit distance of travel. Note that the stochastic
scattering and diffusion models do not rely on the sin-
gle scattering assumption (vi). In the Rayleigh regime
the scattering term is proportional tothe fourth power
of f andD [1–4, 11] (the third power if the scatterers
are cylindrical - [12]), in the stochastic regime to the
second powerof f andD [11, 13] and in the diffusion
regime it isa constant[1, 2]. A simple justification of
these relationships based on dimensional arguments is
presented in [14].

The agreement between theory and experiment is
considered to be moderate, nevertheless the early work
[1, 2, 13, 15] in relatively pure materials is taken to
provide qualitative substantiation to the existence of
loss mechanisms described in Table I. In [3] and [4]
the theoretical analysis of [16] was adapted to produce
quantitative confirmation for the Rayleigh and stochas-
tic regimes by taking into consideration losses due to
the mode conversion at the grain boundaries. It was
concluded that similar description could be adopted for
characterizing steel alloys, even though their material
constants could not be estimated analytically. This is
not entirely consistent with the findings in [17] where
it was noted that when experimenting with steel the
f 2–term often dominates.

The difficulties associated with interpreting atte-
nuation-frequency experiments in terms of the scat-
tering regimes have been highlighted in [18–23]. Al-
lowances that have to be made to take into account
the effect of the boundary conditions and the energy
absorbed by the transducer from each succeeding echo
are described in [18]. In [19, 20, 22, 23] it is pointed out
that this model fails at lower frequencies where beam
spread losses become prominent. It is argued in [22] that
in some cases, the frequency-attenuation curves can be
corrected for beam spread by extrapolating their high
frequency portions - if these involve the Rayleigh or
stochastic regimes. In [21] attention is drawn to further
problems associated with the presence ofabsorption,
grain size distributionandgrain substructure.

In general,absorption(conversion of acoustic en-
ergy into heat) can be linked to anelastic behaviour of
solids [24] which is due to inhomogeneities on a much
finer scale thanD, such as magnetic domain motion
and dislocations and interstitials. The absorption ef-
fects can be taken into account to extend Table I - see
Table II.

TABLE I I Standard attenuation regimes.A1, A2, A3, n andm - ma-
terial constants,n≤ 2, D1 andD2 - characteristic scales different toD

Attenuation Validity
regime range Dα

Large wavelength D
λ
¿ 1 A1

D
λ
+ A2

DD1
λ2 + Ar

D4

λ4

Intermediate D
λ
≈ 1 A1

D
λ
+ A2

DD1
λ2 + As

D2

λ2

wavelength

Small wavelength D
λ
À 1 A1

D
λ
+ A2

DD1
λ2 + A3

D
D3

Dn
2
λn + Ad
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All three models in Table II involve the mag-
netic (hysteretic) absorption term which is proportional
to f (D/λ) [25–28], and dislocation absorption term
which is proportional tof 2 (DD1/λ

2) [23] and [29–
31]. HereD1 is another characteristic scale, the mean
dislocation loop length in a unit volume. Note that the
f 2-term could be also due to molecular relaxation of
frequency above the experimental range [32] or to mag-
netic wall effects [33, 34]. The small wavelength equa-
tion contains an additional term which is due to thermo-
elastic loss and is proportional tof 1/2((D2/λ)1/2)
according to [35, 36] orf 2 according to [37] where
this claim is not justified. HereD2 is yet another char-
acteristic scale - this time of thermal diffusion.

These days absorption can be obtained directly, for
example by using a technique based on the infrared
detection of the heat produced by ultrasound [38–40].
Eliminating its contribution allows one to investigate
scattering regimes with greater precision. However,
such elimination has not been done in the past and
there are still a lot of data around with both scatter-
ing and absorption present. It is claimed in [22] that
it is possible to useRoney’s generalized attenuation
theory: Thus, the relationship between attenuation, fre-
quency and mean grain size can be expressed in terms
of dimensionless variablesDα andπD/λ; the attenu-
ation loss in the entire megahertz frequency range can
be accounted for using just two constants, a hysteretic
and a scattering coefficient [41]. The hysteretic constant
is well established and its experimental determination
can be accomplished by low frequency internal friction
measurement (ibid). This result supersedes that of [42]
which is based on an assumed autocorrelation func-
tion for the material discontinuity and could be used
to bridge the Rayleigh and stochastic regime. It is pro-
posed in [22] to treat the other constant not only as
characterizing the material anisotropy (as in [41]) but
as a more general parameter dependent on grain bound-
ary characteristics as well as mode conversion factors.
Of course, this theory (at least in its original form) does
not allow for other absorption mechanisms.

Thegrain distributionproblem cannot be solved by
an experimental elimination procedure. Its magnitude
seems to have been underestimated in [1, 2]. For ex-
ample, it is remarked in [15] that no special annealing
procedures had been used to prepare the correspond-
ing samples, and thus the estimate of the relative error
in D as≈±5–10% seems unrealistic. Numerical data
and discussion of how the diameter of the equivalent
sphere is related to the mean size as estimated from
metallographic studies, that is photo-micrographs can
be found in [11]: In the Rayleigh regime the mean grain
size is evaluated by taking the distribution of sizes into
account, but in the stochastic regime the direct use of
the mean grain size is usually advocated. This may be
due to the fact that in the stochastic regime the vari-
ability in grain sizes is less important. In [43] and [44]
ultrasonic attenuation has been modeled by combin-
ing Roney’s generalized theory and the assumption that
grain sizes are distributed according to a power law. It
has been concluded that while the Rayleigh and diffu-
sion regimes still hold, in the intermediate frequency
regime, whereDmin≤ λ≤ Dmax (Dmin andDmax being

the minimum and maximum grain sizes respectively),
the attenuation varies with wavelength according to the
same power law which characterizes the grain size dis-
tribution. Later it has been shown in [44] that under rea-
sonable assumptions inverse techniques may be used to
estimate grain size distribution from attenuation data.
We are not aware of any models which take into account
the influence ofthe grain substructureon ultrasonic at-
tenuation.

Thus, there is a lot of controversy in the literature as
to the significance and functional dependene of various
absorption mechanisms as well as to the limits of ap-
plicability of thresholds between different attenuation
regimes. It is also clear that the quality of the published
data is often in question. Nevertheless, we would sug-
gest that the approach of [22] is fruitful and be gener-
alized further by assuming that attenuation-frequency
data can be described in terms of dimensionless pa-
rameters related by a power law and ageneralized ma-
terial constantdependent on the whole multitude of
microstructural parameters.

To be more precise, let use assume thatα is a func-
tion of several, parameters, D,f andv. Then it follows
from the first principles thatR≡ Dα, a dimensionless
attenuation, is a function of the dimensionless parame-
ter D/λ,

Dα = R

(
D

λ

)
. (1)

The existence of other independent dimensionless pa-
rameters will be addressed below.

Let us now introduce ahypothesisthat this depen-
dence is in the form of a piece-wise power law, so that
there are severalD/λ-regimes, where one power law
dominates and we have

Dα = A

(
D

λ

)ν1

, (2)

with A andν1 constants which differ from one regime
to the next, andA a generalized material constant of
the type discussed above. To test (2) we plotDα versus
D/λ on the log-log scale, where base 10 is implied. It
can be also tested by differentiatingα with respect to
λ−1 to obtain

v
dα

d f
= Aν1

(
D

λ

)ν1−1

(3)

and then plottingvdα/d f versusD/λ on the log-log
scale. It is well known that derivatives are sensitive to
experimental errors and thus are less reliable than the
data that have not been differentiated. However, this
can be taken into account in data and error analysis,
and also, although not available to us, dα/d f happens
to be a variable which is measured more accurately in
frequency/attenuation experiments thanα: The form of
the LHS in (3) has been chosen to reflect this fact. The
variabledα

d f had been used for attenuation data analysis
previously [15, 45]. Finally, we note that substituting
(2) into (3) gives

v
dα

d f
= A1/ν1ν1(Dα)(ν1−1)/ν1. (4)
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This suggests a yet another form of the piece-wise
power law hypothesis,

v
dα

d f
= A0(Dα)ν0, (5)

where different regimes differ only by the values of
constantsA0= A1/ν1ν1 andν0= (ν1− 1)/ν1. This form
proves of interest below. It is important to realise that if
the hypothesis (2) is correct, then both hypotheses (3)
and (5) are equivalent to it. On the other hand, in some
situations, say ifα contains extra terms, the other two
hypotheses might produce a smaller or more normally
distributed model error. This realisation lies behind the
idea of exploratory data analysis routinely used in Sys-
tem Identification (a part of control theory) at the stage
of Model Structure Identification (e.g. [46]). Different
equations (structures) are compared in order to find the
one giving the most advantageous residuals.

As we have already mentioned, the above consider-
ations apply even when there are more than two inde-
pendent parameters. Indeed, let there be, say, two char-
acteristic scales,D andD1. Then there exists a function
R, such that

Dα = R

(
D1

D
,

f D

v

)
. (6)

If plotting R on the log-log scale versus one of its di-
mensionless parameters, say,D/λ produces a univer-
sal piece-wise straight line, then the piece-wise power
law is confirmed forD/λ and other parameters may be
neglected. If this exercise produces a host of parallel
straight lines, then the power-law assumption is correct
for D/λ, but dependence onD1/D should be investi-
gated further. If no straight line appears, as far asD/λ
is concerned the power-law hypothesis is invalidated.

Let us now analyze published data and suggest a new
approach for estimation of the mean grain size from
the frequency/attenuation measurements. We will show
that this approach appears to be more reliable and easier
to implement than other widely accepted methods.

3. Exploratory data analysis
We undertook a thorough literature search and analyzed
all the relevant data we uncovered. The data are not
necessarily of the highest quality, so we endeavour to
use only robust statistical measures insensitive to er-
ror distribution (such as means as opposed to standard
deviations) and generally rely on the the approach of
Exploratory Data Analysis and System Identification
as developed for modeling engineering ill-defined sys-
tems rather than well executed physical experiments.
The types of materials studied, the corresponding ref-
erences and conclusions made by the original authors
are all summarized in Table III. It is assumed throughout
that during the experiments the only structure parame-
ter that had been varied was the mean grain size.

To simplify the presentation we group the experi-
ments under consideration into three different classes:

(1) attenuation oflongitudinal ultrasonic waves in
thesteelrods,

TABLE I I I T ypical attenuation/frequency/mean grain size experi-
ments and conclusions concerning attenuation regimes and thresholds

Suggested thresholds and
Materials Refs mechanisms

Aluminium, [1], [2] D/λ<1/3 - Rayleigh scattering
Magnesium and magnetic hysteresis

D/λ>3 - diffusion scattering
Iron, Copper, [3] D/λ<1/10 - Rayleigh scattering

Magnesium and magnetic hysteresis
Steels 12, 15 & 40 [4] 1/10< D/λ<1/4 - stochastic

scattering
Steels 31440, 4150 [12] D/λ<1/2T1 - Rayleigh scattering

1/3< D/λ<3 - stochastic scattering
Steel 46 [48] D/λ<1/4π - Rayleigh scattering
Steel NiMoV [47] D/λ<1/30 - Rayleigh scattering

1/7< D/λ<1/2 - stochastic
scattering

(2) attenuation oflongitudinal ultrasonic waves in
the rods ofpure metals, and finally

(3) attenuation ofshearultrasonic waves in the rods
of puremetals.

The grouping appears all the more reasonable, since the
structure of steels is more difficult to model theoreti-
cally, and since when using shear waves attenuation is
easier to measure (the shear wave is nearly parallel to
the rod walls and thus on reflection from these walls no
mode conversion takes place - [1]). The corresponding
data are plotted in Figs 1–3. There and everywhere be-
low we use experimental points only. In figures type a)
we present the usual family of curvesα( f ) parameter-
ized byD. In figures type b), we re-plot the data using
standard dimensionless variablesDα andD/λ. In fig-
ures type c), we re-plot them again using dimensionless
variablesvdα/d f (the differentiation procedure is de-
scribed in Appendix A) andD/λ. The straight lines are
drawn there to indicate the preferential slope. It is clear
that the universal piece-wise power lawis confirmed
for D/λ. In this respect our results are similar to those
based on the generalized Roney theory. Moreover, the
considerations offered at the end of the Background
section suggest thatDα depends on at least one other
dimensionless combination involving at least one other
spatial scale. We will return to this point below.

It is also clear thatD/λ<1 for all the analyzed data,
and therefore, one would expect at least some of the
straight segments lie in the Rayleigh scattering regime.
However, the figures type b) show that most measure-
ments are reasonably well described by the second
power law (2), with

ν1 = 2 (7)

- for the pure metals as well as steels - even though some
data appear to lie in other regimes. In particular, when
D/λ<0.3, iron rods are best modeled by the fourth
power law. The fact thatν1 is mostly 2 suggests that the
scattering law is mostly other than Rayleigh’s or that
most attenuation is caused by mechanisms other than
scattering. This conclusion is rather unexpected.

Even more unexpectedly,a more powerful universal-
ity emerges if the above data are replotted again, using
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(ai) (aii)

(b) (c)

Figure 1 Attenuation of longitudinal ultrasonic waves in the steel rods: (a) Dependence ofα on f according to [3, 4, 12, 47, 48]; (b) Dependence of
Dα on D/λ. The straight line indicates the main slope (2). Its intercept is−1.2. (c) Dependence ofvdα/d f on D/λ. The straight line indicates the
main slope (1). Its intercept is−1.

Equation 6, so that the variables arevdα/d f andDα.
This particularmodel structurehad been arrived at via
exploratory data analysis which involved testing var-
ious equivalentversions of the piece-wise power law
hypothesis. It allows aconvenientdata visualisation, i.e.
reduction in visual data spread, and thus leads to smaller
variance of residuals. The resulting diagrams for longi-
tudinal and shear waves are presented in Figs 4a and 5a
respectively. Here all data for both steels and pure met-
als are utilized. One could attempt to fit these data using
the ordinary linear regression and choosingvdα/d f as
the regression variable. Then we have

ν0 = 1± 3%, log A0 = −1.4± 3%, q = 0.89,
(8)

whereq is the correlation coefficient. It is important to
choosevdα/d f as the regression variable because lin-
ear regression gives unbiased estimates only under the
assumption that the regression variable is known ex-
actly, the regression parameters are constant and the er-
ror on the dependent variable is zero mean and normally

distributed. Even with the above choice, these condi-
tions may be violated: Indeed, the resulting straight
line which is shown in Figs 4b and 5b corresponds to
ν0= 3/4, that is the fourth power law,ν1= 4. However,
the graphs of type b) presented in Figs 1–3 show that
when data for different materials are fitted separately,
in most experiments under consideration the predomi-
nant regime is different to Rayleigh’s. It is the scram-
bling of the data (which masks the parameter variation
from one group of materials to another) that produces
the illusion of the Rayleigh law. Thus, the fitting which
does not involve testing the assumptions underlying the
linear regression algorithm confuses the physics.

A more refined approach is to use the data compart-
mentalization as presented in Figs 1–3 and gives the
value ofν1= 2 (see (7)). This suggests that

ν0 = 0.5 (9)

Using this insight we can identify the two segments
presented in Figs 4a and 5a by re-grouping the data
again, now intotwoclasses of materials:
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(a)

(b)

(c)

Figure 2 Attenuation of longitudinal ultrasonic waves in the rods of pure metals: (a) Dependence ofα on f according to [1–4]; (b) Dependence of
Dα on D/λ. The straight line indicates the main slope (2). Its intercept is−1.2. (c) Dependence ofvdα/d f on D/λ. The straight line indicates the
main slope (1). Its intercept is−1.

(1) those for which logvdα/d f >−1.5, and
(2) those for which logvdα/d f <−1.5.

Of course, this type of grouping isconsistentwith the
earlier representations, given in Figs 1–3. These show
that in the materials of the second group the attenuation
itself is very low; their generalized material constantA
is very small. Note that the materials in question are
the NiMoV steel used in [47], martensitic and bainitic
steels used in [12], and aluminum and magnesium used
in [1–4]. The fact that different authors produce similar
results for magnesium rods suggests that we are dealing
with genuine differences in material properties rather
than differences in experimental procedure.

Finally, the visual inspection of Figs 1b, 2b and 3b
shows that not all the data in those classes are described
by the second power law, other regimes are present as
well at lower and higher values ofvdα/d f . Selecting
those that are and performing the fitting, we obtain for

the smaller attenuations

ν0 = 0.6± 1%, log A0 = −1± 5%, q = 0.99.
(10)

and for the larger,

ν0 = 0.6± 5%, log A0 = 1± 5%, q = 0.99. (11)

The above correlation coefficients are higher than in
(8). The values ofν0 are close to (9), particularly, if it
is taken into the account that the estimates of standard
deviation in parameters are sensitive to error distribu-
tion and thus, are not very reliable (they also deteriorate
with decreasing number of observations). The fact that
the differences in the generalized material constant do
not appear large within each group may be explained
by comparing (3) to (4). We can see that when using
the log-log scale, the last formula leads to halving of
the differences in intercepts.
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(a)

(b)

(c)

Figure 3 Attenuation of shear ultrasonic waves in the rods of pure met-
als: (a) Dependence ofα on f according to [1–4]; (b) Dependence of
Dα on D/λ. The straight line indicates the main slope (2). Its intercept
is−1.2. (c) Dependence ofvdα/d f on D/λ. The straight line indicates
the main slope (1). Its intercept is−1.

(a)

(b)

Figure 4 Dependence ofvdα/d f onDα for longitudinal waves in metal
rods: (a) The slope of the straight lines is 0.5 and the intercepts are−0.5
and 0.5 respectively: (b) The slope of the straight line is 0.75 and the
intercept is 0.8. The correlation co-effiecient isq= 0.8.

There is an interesting analogy with the fracture me-
chanics: It has been known for a long time that for any
given material the family of curves describing the rela-
tionship between the length of fracture` and the num-
ber of loading cyclesN which is parameterized with the
maximum magnitude of cyclic loadσ may be re-plotted
as one universal graph or master curve when variables
d`/dN and intensity factor1K ≡ σ√` are used (see
Fig. 6). It transpires that in both fracture mechanics
and ultrasonic inspection, a universal representation is
achieved by plotting a “kinetic” variable which repre-
sents the rate of change of the main measured quantity
(d`/N or dα/dλ−1 respectively) versus the product of
a power of the main measured quantity (`1/2 or α re-
spectively) and a parameter which is specific to the
experiment (σ or D respectively). In both situations
major portions of the master curve are well described
by power-type laws. Most applications in fracture me-
chanics rely on the kinetic diagram with onlyonema-
jor linear portion. Similarly to our case, the presence
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(a)

(b)

Figure 5 Dependence ofvdα/d f on Dα for shear waves in the metal
rods. (a) The slope of the straight lines is 0.5 and the intercepts are−0.5
and 0.5 respectively; (b) The slope of the straight line is 0.75 and the
intercept is 0.9. The correlation coeffiecient isq= 0.9.

of twosuch portions becomes apparent only on testing
a large number of samples and statistical data analysis
supported by analysis of damage mechanisms [50].

To conclude, most of theα( f, D) data from the orig-
inal three classes can be described by using just two
straight lines, one for higher attenuation per unit fre-
quency, and one for lower. It is quite clear that the data
points which have been obtained using the longitudi-
nal waves and which fall off these lines can be easily
identified from Figs 1b, 2b or 3b as belonging to other
than the predominantD/λ regimes. In Fig. 7 we present
the fuller master curve which emphasizes the presence
of more than just two major linear portions. Too few
data points have been obtained using the shear wave
experiments to confirm that they are indeed more pre-
cise, and to check whether they also fall into different
D/λ regimes. However, it is clear that the two straight
segments represented in Figs 4a and 5a describe both
types of waves equally well.

Figure 6 Kinetic damage diagram:`(m) is the length of a micro-crack,N
the number of load cycles and1K ≡ σ√` (MPa

√
m) is the change in the

stress intensity factor. A copy of Fig. 2 in [49].

Figure 7 Dependence ofvdα/d f onDα for longitudinal waves in metal
rods, with indication of other possible regimes.

4. Practical application of the new approach
It is easy to see that given a rod of a polycrystalline
material andα( f ) data covering a range of frequencies,
the master curve presented in Fig. 4a can be used to
establish the mean grain size of this material. Indeed,
all we have to do is apply the following procedure:

1. Assume speed of propagation (this is much less
sensitive to microstructure than attenuation). Assume
D= 0.3 mm.
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2. Plot logvdα/d f vs logDα using the assumed val-
ues ofv andD.

3. Establish whether the above plot contains thef 2-
portion, where the slope isν−1

0 = 2.
4. If yes, translate it horizontally to fit the master

curve; choose a point which lies on both the translated
plot and the master curve, and use the corresponding
vdα/d f - andα-values to identify the mean grain size
D.

It is also easy to check by inspection of Figs 4a and 5a
that this procedure may produce a very high level of
accuracy; an error of 10–20% rising to 100% for the
lower mean grain sizes (the iron data withD< 0.3 mm
should not be taken into account, since as we mentioned
above, these data appear to be consistent with the hy-
pothesis of Rayleigh’s scattering). Let us illustrate this
by justifying the last figure. Indeed, comparing predic-
tions based on the master curve to the measured values,
the maximum error in logDα is

log(Dα)predicted− log(Dα)measured≈ 0.3, (12)

which implies that for an accurately measuredα, the
maximum relative error inD is

Dpredicted

Dmeasured
≈ 2. (13)

More accurate figures could be obtained if we had,
borrowing the neural networks terminology, a larger
training and a large testing set. Thus, our accuracy is
comparable with that reported in [51] - without having
to adhere to the Rayleigh regime or choose a standard
specimen (cf. [12]). In some cases the accuracy may
be even as high as that reported in [52] where a much
more elaborate schedule is advocated. We believe that
in most cases it cannot deteriorate by much. Indeed, a
careful study of the data published in [53] shows that
our generalized material constants are very close to the
stochastic scattering factors. For example, the value for
this factor for aluminum is 0.005, which is consistent
with the corresponding intercept of−1.6 in Fig. 2b.
Similarly, for copper this factor is about 44 times higher,
again in accordance with Fig. 2b. With the exception of
Tungsten and lead, all other metals mentioned in [53]
fall into the identified two groups. This leads us to be-
lieve that the majority of metals should be described by
our master curve well. By the same token if a speci-
men under test exhibits an excessively high (over 1) or
excessively low (under 0.001) value of|vdα/d f | this
would indicate that using our master curve does not
have to give reliable results.

5. Conclusions
It has been shown that practically all published ultra-
sonic data pertaining to attenuation of ultrasonic waves
in polycrystalline materials, both pure metals and al-
loys, may be described by one master curve, an univer-
sal piece-wise linear graph which represents a relation-
ship between two dimensionless variables, logDα and

logv dα/d f and is described by the following equation

log Dα =


2 logv

dd

d f
+ 1 if log v

dd

d f
< −1.5,

2 logv
dd

d f
− 1 if log v

dd

d f
> −1.5.

(14)

Although it cannot be proven that all the new data will
always exhibit the same behavior it seems remarkable
that practically all the data we could find do. This sug-
gests that the above graph has immediate practical ap-
plications:

(1) Its independence of the material is a novel and
useful feature, since it does not appear feasible to estab-
lish universal threshold values which separate the tra-
ditional attenuation regimes (see Tables II and III). In
particular, different ratios between material constants
used in Table II would produce different thresholds.
These might also vary with the minimum and maxi-
mum grain sizeDmin andDmax.

(2) It has been shown that the master curve may be
employed to estimate the mean grain sizeD using ul-
trasonic attenuation measurements, without recourse to
standard specimens or measurements of material con-
stants. The standard deviation in the mean grain size is
estimated to be 10–20%, rising to 100% at the lower
mean grain sizes. Excessively high (over 1) or exces-
sively low (under 0.001) values of|vdα/d f | would in-
dicate that the procedure does not have to give reliable
results.

(3) The metallographic techniques for measurement
of the mean grain size are a subject of much controversy.
The proposed graph might be used as an additional ar-
gument when validating the metallographic measure-
ments of this nature.

From the fundamental point of view our results appear
interesting as well: The slope of the linear portions of
the master curve is consistent withDα being propor-
tional to the second power ofD/λ for all materials but
iron, even though the data lie in the parameter range
where Rayleigh’s scattering is expected. The frequent
occurence of the second power law in steels has been
noted in [17] before: it is remarked even in [2] that the
data on aluminum with grain size 0.23 mm could be
fitted rather well using the square law; and we have
discovered a similar situation when working with ce-
ramics data [54]. However, the predominance of this
law has never been spelled out before. The law can be
due to several different physical mechanisms, stochas-
tic scattering, a particular grain size distribution, dis-
location damping, molecular relaxation at a frequency
above the experimental range, thermo-elastic loss etc.
Since most authors believe that in the megahertz regime
absorption effects are neglible, this narrows the prob-
lem down to the model of scattering or the grain size
distribution which follows a power law (see the above-
mentioned results obtained in [44, 45]). However, it
seems unlikely that all grain distributions may be thus
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described. Moreover, the power-law distributions do
not automatically imply additional characteristic scales
and our results presented in Figs 1c, 2c, and 3c suggest
that an extra spatial scale is involved.

Thus, it is likely that it is the multiple scattering in-
volving one extra spatial scale that prevails. The hypoth-
esis is further confirmed by studying the data published
in [53] and discussed at the end of the last section. Al-
though the formulas for the stochastic scattering factors
do not exhibit dependence on other scales, a weak de-
pendence of this nature is likely, say, if the assumption
(v) is relaxed and the correlation length characterizing
the autocorrelation function for the scattered field is
introduced. This is particularly plausible because the
stochastic scattering model often underestimates the
level of scatter by as much as a factor of 2 (ibid). Un-
fortunately, at present there appears to be no better than
the stochastic scattering model description of multiple
scattering by closely packed strong scatterers against
which our conclusion may be easily tested.

Finally, the fact that two different groups of data
emerge does not imply that there are no differences
within the groups, only that these differences are not
particularly pronounced. Indeed, we have shown that
comparing (3) to (4) and using the log-log scale, the last
formula leads to halving of the differences in intercepts.
The confirmation or refutation of the multiple scattering
hypothesis may be obtained only on carrying out a se-
ries of carefully planned experiments, covering a wide
range of frequencies, materials and microstructures.

Appendix A
Let us briefly discuss our differentiation procedures.

As we have mentioned already, the difference be-
tween attenuations experienced at neighboring frequen-
cies is the main quantity measured in attenuation ex-
periments. However, this type of data are not easily
available, and the typical published curves represent
theα( f ) dependence as in Figs 1a, 2a and 3a. Conse-
quently, numerical differencing procedures have been
employed to compute dα/d f . To establish robustness
of our results two such procedures have been tried: the
straightforward differencing and a more sophisticated
method based on the assumption thatα is a monotoni-
cally increasing function off . This particular constraint
allows us to use a relatively fast optimization algorithm
developed in [55]. (1981) to findδαi ’s which minimize
the following cost function

J0 ≡
N−1∑
i=0

[
αi+1−

N−1∑
n=1

δαnH (i −n)

]2

+β2
N−1∑
n=1

δα2
n+1.

(A.1)

Here αi+1=
∑i

n=11αn=
∑N−1

n=1 1αnH (i − n);
1αn≡αn+1−αn; H ( j ) is the discrete Heaviside
function;

∑0
n=1 δαn≡ 0; N is the number of available

discrete points and all the data are shifted, so that
α1= 0. This algorithm is incorporated into our EDA
(Exploratory Data Analysis) package as a DECOP
subroutine (for DECOnvolution with Positive kernels).
When the optimization procedure is carried out for

(a)

(b)

(c)

Figure A1 The rate of ultrasonic attenuationvdα/d f as estimated using
(a) DECOP withβ2= 10−4, (b) DECOP withβ2= 10, and (c) the finite-
differencing technique. The key and parameters of the straight line as in
Fig. 1c.
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each value of the frequency counteri , (dα/d f )i is
estimated to beδαi /δ fi , whereδ fi = fi+1− fi . Thus,
even though the original algorithm has been developed
for an evenly spaced discrete argument we can deal
with the discrete functionα( f ) for which the values
of f are unevenly spaced. The results depend onβ2

but weakly: Two different estimates of the attenuation
derivative corresponding to two different values ofβ2

are presented in Fig. A1a and b. It is clear that for
small values ofβ2 which give more weighting to the
first, variance, term in (A.1) the result is practically
indistinguishable from the one obtained using the
straightforward differencing (Fig. A1c). Larger values
of β2 give more weight to the second term in (A.1)
which is the L2-norm of δα. In the main body of
the paper we chooseβ2= 0.5 (see Fig. 1c) which
corresponds to mild smoothing of theα( f ) curves. The
choice achieves a trade-off between two conflicting
requirements: on the one hand, there is a perceptible
difference between the outcomes of our two differen-
tiation procedures; on the other hand, the dominant
slope is≈1 (since it is≈2 in Figs 1b, 2b and 3b).
Interestingly, the final estimates obtained using the two
differentiation procedures differ mainly in their initial
values, where as a rule, the measurement precision is
at its lowest and the beam spreading prevails. Other
differentiation procedures involving prior smoothing
could be utilized, but it was not felt necessary to
introduce this extra degree of refinement.
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