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of polycrystalline materials using ultrasonic NDE

L. R. BOTVINA
Institute of Metallurgy, Russian Academy of Sciences, Moscow, Russia

L. J. FRADKIN, B. BRIDGE

School of Electrical, Electronic and Information Engineering, South Bank University,
London SE1 0AA, UK

E-mail: fradkil@sbu.ac.uk

We re-analyze published data on ultrasonic inspection of a number of pure metals and
alloys involving a range of mean grain sizes (from 0.0125 mm to 0.3 mm). We show that
they may be described by one master curve graph consisting mainly of two distinct but
parallel linear segments. This means that our presentation clusters the data under study
into two distinct groups, each chracterized by its own generalized material constant. The
slope of the segments suggests the predominance of scattering other than Rayleigh’s, since
it is consistent with the second power law rather than the fourth. We argue that the
attenuation is likely to be due to multiple scattering, particularly since our generalized
material constants seem to be similar to the published stochastic scattering factors. The
master curve graph suggests a new fast and simple method for assessing the mean grain
size which may be carried out without recourse to standard specimens or measurements
other than those routinely carried out during ultrasonic inspection. As the range of
materials and grain sizes are in extensive use in industry the simple schedule proposed
should prove of substantial use in practical material evaluation and production process
control. © 2000 Kluwer Academic Publishers

1. Introduction ing to different pure metals and alloys and arrive at a
It is accepted that the same features of microstructureomewhat unorthodox combination of variables, one
that dominate attenuation of ultrasonic waves also deivolving the rate of the attenuation change with fre-
termine mechanical properties of industrial materialsquency. This choice of variables allows most published
For example, in polycrystalline metals the grain sizedata to be plotted on one master curve: This particular
greatly influences both ultrasonic attenuation [1-4] ancturve had been arrived at via exploratory data analysis
material strength, ductility, toughness and formabilitywhich involved testing variousquivalentversions of
[5-7]. Since ultrasonic inspection is less expensive thathe piece-wise power law hypothesis. It allowsan-

the destructive tests required to assess mechanical propenientdata visualisation, i.e. reduction in visual data
erties many analytical and experimental studies havepread, and thus leads to smaller variance of residuals.
been directed at establishing whether and how featurebhe master curve could be used to estimate the mean
of microstructure may be inferred from ultrasonic in- size of the metal grain in a fast and inexpensive manner.
spection data. As a result, a number of dimensionless Apart from being of immense value in quality con-
parameters have been proposed in the non-destructiteol, the universal relationships between the mean grain
evaluation (NDE) literature to describe various atten-size and ultrasonic parameters are of fundamental in-
uation regimes. These regimes are usually determinetgrest. For example, it is well known that if a process
by the magnitude of the ratio of the ultrasonic wave-is self-similar, that is if a quantitative relationship be-
length to the mean size of inhomogeneity. There aptween its characteristic variables is the same over a
pears to be a broad consensus on what the regimes akgide range of scales, then it is of a power-type [8]. For
but the thresholds which separate them appear to be méhiis reason, when a power-type relationship has been
terial dependent and what makes the traditional modfound, and the presence wfo such relationships, one
els even less practicable, they allow identification offor each particular group of metals is confirmed below,
the mean grain size only if some elusive material conit is current scientific practice to ascertain experimen-
stants are known. Indeed, in most cases these canntally whether self-similarity is present as well. Even if
be estimated analytically and are difficult to measureit is not experiments of this kind throw additional light

In the present paper we analyze published data pertairon the physical nature of the relationship.
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2. Background manner and arrive at the receiver with randomly dis-
Attenuationa is a widely used ultrasonic parameter. It tributed phases. The third regime is callitfusionto
is measured in nepers/cm (or db/m) and represents iadicate thatwhen the wave lengthis small a cycle of the
relative energy loss experienced by an ultrasonic planeltrasound wave scatters from many grain boundaries
wave per unitlength of a solid sample. Many authors bewithin a unit distance of travel. Note that the stochastic
lieve that in polycrystalline materials attenuation is duescattering and diffusion models do not rely on the sin-
mainly to scattering(reorientation and mode conver- gle scattering assumption (vi). In the Rayleigh regime
sion of energy) by the grains [1, 2] and precipitates [9].the scattering term is proportional tioe fourth power
Scattering results from interaction with material defectsof f and D [1-4, 11] (the third power if the scatterers
comparable to one wavelength in size, e.g. grain boundare cylindrical - [12]), in the stochastic regime to the
aries. For this reason, scattering depends on size, shaggcond poweof f andD [11, 13] and in the diffusion
orientation and anisotropy of the grains, the structureegime it isa constan{l, 2]. A simple justification of
and thickness of their boundaries as well as chemistrythese relationships based on dimensional arguments is
e.g. the presence of alloying materials or deposits. Theresented in [14].
standard assumptions used when modeling grain scat- The agreement between theory and experiment is
tering are: considered to be moderate, nevertheless the early work
[1, 2, 13, 15] in relatively pure materials is taken to

(i) the discontinuity of the grain boundary is of elas- provide qualitative substantiation to the existence of

tic nature, so that there is no discontinuity of density; l0ss mechanisms described in Table I. In [3] and [4]
(i) an individual grain scatters as a sphere/cubethe theoretical analysis of [16] was adapted to produce
cylinder; quantitative confirmation for the Rayleigh and stochas-
(iii) the grains are randomly located and randomlytic regimes by taking into consideration losses due to
oriented, so that the bulk of material is elastically ho-the mode conversion at the grain boundaries. It was
mogeneous and isotropic; concluded that similar description could be adopted for

(iv) the number of grains is large; characterizing steel alloys, even though their material
(v) the scatter fromindividual grainsis not coherent.constants could not be estimated analytically. This is
not entirely consistent with the findings in [17] where

Using these assumptions, three major scatterindf Was noted that when experimenting with steel the
regimes have been identified (other, bridging, regimes “—term often dominates.
are occasionally mentioned as well). Their descrip- The difficulties associated with interpreting atte-
tion in terms of dimensionless variables is presentediuation-frequency experiments in terms of the scat-
in Table I. We use standard notatior3:is the diam-  tering regimes have been highlighted in [18-23]. Al-
eter of sphere equivalent to mean grain size; v/ f lowances that have to be made to take into account
is the ultrasound wave lengtt, is the ultrasound fre- the effect of the boundary conditions and the energy
quency andv is the speed of sound in the inspectedabsorbed by the transducer from each succeeding echo
material. are described in [18].In[19, 20, 22, 23] itis pointed out

The first regime in which the wave length is much that this model fails at lower frequencies where beam
larger than the grain size is call&hyleighafter Lord ~ SPreadlosses become prominent. Itis arguedin[22] that
Rayleigh [10] who first described scatter of waves within Some cases, the frequency-attenuation curves can be
a large wavelength by a small sphere. The applicatioorrected for beam spread by extrapolating their high

of Rayleigh's formula obviously involves an additional frequency portions - if these involve the Rayleigh or
assumption: stochastic regimes. In [21] attention is drawn to further

problems associated with the presenceala$orption,

(vi) the scattered energy is sufficiently small, so thatdrain size distributiorandgrain substructure
multiple scattering effects may be neglected. In general,absorptlor)(conversmn of acoustic en-
ergy into heat) can be linked to anelastic behaviour of

solids [24] which is due to inhomogeneities on a much
diner scale tharD, such as magnetic domain motion

size the Huygens (spherical) wavelets which emanat nd dislocations ar_1d interstitials. The absorption ef-
from the neighboring points on the incident plane wave ec;ls can be taken into account to extend &abl see
front travel through randomly oriented individual 'apPlell-

grains. Thus they change their velocity in a random
TABLE |l Standard attenuation regimes;, Ay, Az, n andm - ma-
terial constants) < 2, D; and D, - characteristic scales different B

The second regime is callestochasticto indicate
that when the wave length is comparable to the grai

TABLE | Three major scattering regimes;, As and Aq are scat-
tering coefficients characterizing anisotropy and the average change in

elastic properties between grains Augnuatlon Validity
regime range Da
Scattering regime Validity range Do bD 4
Large wavelength 2«1 A2+ A BB 4 A B
. 4
Rayleigh D«1 A Intermediate Dx1 AL+ Az% + As',f—zz
Stochastic bx1 As E\’—zz wavelength
. . Dn
Diffusion Dy1 Aq Small wavelength 21 AL+ Az% + PGD% # +Ag
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All three models in Table Il involve the mag- the minimum and maximum grain sizes respectively),
netic (hysteretic) absorption term which is proportionalthe attenuation varies with wavelength according to the
to f (D/)) [25-28], and dislocation absorption term same power law which characterizes the grain size dis-
which is proportional tof 2 (DD1/A?) [23] and [29— tribution. Later it has been shown in [44] that under rea-
31]. HereD; is another characteristic scale, the mearsonable assumptions inverse techniques may be used to
dislocation loop length in a unit volume. Note that the estimate grain size distribution from attenuation data.
f2-term could be also due to molecular relaxation ofWe are not aware of any models which take into account
frequency above the experimental range [32] or to magthe influence othe grain substructuren ultrasonic at-
netic wall effects [33, 34]. The small wavelength equa-tenuation.
tion contains an additional term which is due to thermo- Thus, there is a lot of controversy in the literature as
elastic loss and is proportional t6¥/?((D,/A)/%)  tothe significance and functional dependene of various
according to [35, 36] orf? according to [37] where absorption mechanisms as well as to the limits of ap-
this claim is not justified. Her®, is yet another char- plicability of thresholds between different attenuation
acteristic scale - this time of thermal diffusion. regimes. Itis also clear that the quality of the published

These days absorption can be obtained directly, fodata is often in question. Nevertheless, we would sug-
example by using a technique based on the infraredest that the approach of [22] is fruitful and be gener-
detection of the heat produced by ultrasound [38—40]alized further by assuming that attenuation-frequency
Eliminating its contribution allows one to investigate data can be described in terms of dimensionless pa-
scattering regimes with greater precision. Howeverrameters related by a power law andemeralized ma-
such elimination has not been done in the past antkerial constantdependent on the whole multitude of
there are still a lot of data around with both scatter-microstructural parameters.
ing and absorption present. It is claimed in [22] that To be more precise, let use assume that a func-
it is possible to usdRoney’s generalized attenuation tion of several, parameters, D,andv. Then it follows
theory. Thus, the relationship between attenuation, frefrom the first principles thaR= D«, a dimensionless
quency and mean grain size can be expressed in ternastenuation, is a function of the dimensionless parame-
of dimensionless variabld3« andsw D/A; the attenu- ter D/A,
ation loss in the entire megahertz frequency range can
be accounted for using just two constants, a hysteretic Do = R(B) (1)
and a scattering coefficient[41]. The hysteretic constant A

is well established and its experimental determinationry . ovistence of other independent dimensionless pa-
can be accomplished by low frequency internal friCtionrameters will be addressed below

me_asu_rementhiid). This result supersedes that_ of[42] Let us now introduce aypothesighat this depen-
which is based on an assumed autocorrelation funcy, e is in the form of a piece-wise power law, so that

tion for the material discontinuity and could be used ;
. ; ) . . there are severdD /A-regimes, where one power law
to bridge the Rayleigh and stochastic regime. It is pro- /A-1eg P

posed in [22] to treat the other constant not only asdomlnates and we have
characterizing the material anisotropy (as in [41]) but Do — A<B>Ul
as amore general parameter dependent on grain bound- - ’
ary characteristics as well as mode conversion factors. ) ) )
Of course, this theory (at least in its original form) doesWith A andv; constants which differ from one regime
not allow for other absorption mechanisms. to the next, andA a generalized material constant of
Thegrain distributionproblem cannot be solved by the type discussed above. To test (2) we platversus
an experimental elimination procedure. Its magnitudeP/* On the log-log scale, where base 10 is implied. It
seems to have been underestimated in [1, 2]. For exé@n be also tested by differentiatingwith respect to

0 . : O :
ample, it is remarked in [15] that no special annealing® ™~ t0 obtain

()

procedures had been used to prepare the correspond- dor D\ "1
ing samples, and thus the estimate of the relative error vd—f = Av1(7> 3)
in D as~45-10% seems unrealistic. Numerical data

and discussion of how the diameter of the equivalenind then plotting/de/d f versusD/A on the log-log
sphere is related to the mean size as estimated froggcale. It is well known that derivatives are sensitive to
metallographic studies, that is photo-micrographs carxperimental errors and thus are less reliable than the
be found in [11]: In the Rayleigh regime the mean graindata that have not been differentiated. However, this
size is evaluated by taking the distribution of sizes intocan be taken into account in data and error analysis,
account, but in the stochastic regime the direct use oind also, although not available to us,/df happens

the mean grain size is usually advocated. This may be be a variable which is measured more accurately in
due to the fact that in the stochastic regime the Varifrequency/attenuation experiments thai he form of
ability in grain sizes is less important. In [43] and [44] the LHS in (3) has been chosen to reflect this fact. The
ultrasonic attenuation has been modeled by combinvariabled* had been used for attenuation data analysis

ing Roney’s generalized theory and the assumption thaireviously [15, 45]. Finally, we note that substituting
grain sizes are distributed according to a power law. I{2) into (3) gives

has been concluded that while the Rayleigh and diffu-

sion regimes still hold, in the intermediate frequency Ud_“ _ Al/vlvl(Da)(vl—l)/vl‘ (4)
regime, wheréDmin < A < Dmax (Dmin @nd Dmax being df
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This suggests a yet another form of the piece_wise'l'ABLE I11 Typical attenuation/frequency/mean grain size experi-

power law hypothesis, ments and conclusions concerning attenuation regimes and thresholds
do _ Suggeste_d thresholds and
vd_f = Ay( Da)”", 5) Materials Refs mechanisms
Aluminium, [1],[2] D/A <1/3 - Rayleigh scattering
where different regimes differ only by the values of Magnesium and magnetic hysteresis
constantsy = AY"1y; andvg = (v1 — 1)/v1. This form D/x > 3 - diffusion scattering
proves of interest below. It is important to realise that if ™" Copper. [81 D/*<1/10- Rayleigh scattering
the hypothesis (2) is correct, then both hypotheses (%tgengstg]& 20 " ﬂlgrfg]/ig:elt/'ir_'ft;if:;ic
and (5) are equivalent to it. On the other hand, in some ' scattering
situations, say ifv contains extra terms, the other two Steels 31440, 4150 [12] D/ <1/2T; - Rayleigh scattering
hypotheses might produce a smaller or more normally 1/3< D/3 <3 - stochastic scattering
distributed model error. This realisation lies behind thegiz: ﬁ?MoV [Tf]] B; :\\ - 1; ‘3‘75 - EZYI';'QE :g:gg;‘:g
idea of exploratory data analysis routinely used in Sys- 11D 1/23f st
tem Identification (a part of control theory) at the stage scattering

of Model Structure Identification (e.g. [46]). Different

equations (structures) are compared in order to find the

one giving the most advantageous residuals. ) o ) )
As we have already mentioned, the above consider- (2) attenuation oiongltudllnal ultrasonic waves in

ations apply even when there are more than two indeth€ rods ofpure metalsand finally _

pendent parameters. Indeed, let there be, say, two char- (3) attenuation o$hearultrasonic waves in the rods

acteristic scale) andD;. Then there exists a function ©f Puremetals.

R, such that . .
. The grouping appears all the more reasonable, since the

D: fD structure of steels is more difficult to model theoreti-
Do = R(—, —> (6)  cally, and since when using shear waves attenuation is
D Yy, a g
easier to measure (the shear wave is nearly parallel to
If plotting R on the log-log scale versus one of its di- the rod walls and thus on reflection from these walls no
mensionless parameters, s&y/A produces a univer- mode conversion takes place - [1]). The corresponding
sal piece-wise straight line, then the piece-wise powedata are plotted in Figs 1-3. There and everywhere be-
law is confirmed forD /A and other parameters may be low we use experimental points only. In figures type a)
neglected. If this exercise produces a host of parallelve present the usual family of curveéf) parameter-
straight lines, then the power-law assumption is correcized byD. In figures type b), we re-plot the data using
for D/, but dependence ob4/D should be investi- standard dimensionless variables andD/A. In fig-
gated further. If no straight line appears, as fabDa8.  ures type c), we re-plot them again using dimensionless
is concerned the power-law hypothesis is invalidated. variablesvde/d f (the differentiation procedure is de-
Let us now analyze published data and suggest a negcribed in Appendix A) an@® /). The straight lines are
approach for estimation of the mean grain size fromdrawn there to indicate the preferential slope. Itis clear
the frequency/attenuation measurements. We will showhat the universal piece-wise power lag confirmed
that this approach appears to be more reliable and easifar D/A. In this respect our results are similar to those
to implement than other widely accepted methods.  based on the generalized Roney theory. Moreover, the
considerations offered at the end of the Background
section suggest th@« depends on at least one other

3. Exploratory data analysis dimensionless combination involving at least one other
We undertook a thorough literature search and analyzeghaia| scale. We will return to this point below.

necessarily of the highest quality, so we endeavour tgnq therefore, one would expect at least some of the
ror distribution (such as means as opposed to standaigowever, the figures type b) show that most measure-

deviations) and generally rely on the the approach ofnents are reasonably well described by the second
Exploratory Data Analysis and System Identificationyower law (2), with

as developed for modeling engineering ill-defined sys-
tems rather than well executed physical experiments. vy =2 7
The types of materials studied, the corresponding ref-
erences and conclusions made by the original authorgfor the pure metals as well as steels - even though some
are allsummarizedin Table lIl. Itis assumed throughoutata appear to lie in other regimes. In particular, when
that during the experiments the only structure parameD /A < 0.3, iron rods are best modeled by the fourth
ter that had been varied was the mean grain size. ~ power law. The fact that; is mostly 2 suggests that the
To simplify the presentation we group the experi-Scattering law is mostly other than Rayleigh’s or that
ments under consideration into three different classesmost attenuation is caused by mechanisms other than
scattering. This conclusion is rather unexpected.
(1) attenuation ofongitudinal ultrasonic waves in Even more unexpectedlymore powerful universal-
thesteelrods, ity emerges if the above data are replotted again, using
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Figure 1 Attenuation of longitudinal ultrasonic waves in the steel rods: (a) Dependemncerof according to [3, 4, 12, 47, 48]; (b) Dependence of
Da on D/A. The straight line indicates the main slope (2). Its interceptli®. (c) Dependence afda/df on D/A. The straight line indicates the
main slope (1). Its intercept is1.

Equation 6, so that the variables amy/df andDw«.  distributed. Even with the above choice, these condi-
This particulamodel structurdhad been arrived at via tions may be violated: Indeed, the resulting straight
exploratory data analysis which involved testing var-line which is shown in Figs 4b and 5b corresponds to
ious equivalentversions of the piece-wise power law vy = 3/4, thatis the fourth power law; = 4. However,
hypothesis. It allows eonvenientlata visualisation,i.e. the graphs of type b) presented in Figs 1-3 show that
reduction invisual data spread, and thus leads to smallavhen data for different materials are fitted separately
variance of residuals. The resulting diagrams for longi-in most experiments under consideration the predomi-
tudinal and shear waves are presented in Figs 4a and Bant regime is different to Rayleigh’s. It is the scram-
respectively. Here all data for both steels and pure metbling of the data (which masks the parameter variation
als are utilized. One could attempt to fit these data usinfrom one group of materials to another) that produces
the ordinary linear regression and choosig/df as  theillusion of the Rayleigh law. Thus, the fitting which

the regression variable. Then we have does not involve testing the assumptions underlying the
linear regression algorithm confuses the physics.
vo=1+3%, logA;=—-14+3% q=0289 A more refined approach is to use the data compart-

(8)  mentalization as presented in Figs 1-3 and gives the
whereq is the correlation coefficient. It is important to value ofv; =2 (see (7)). This suggests that
choosevda/d f as the regression variable because lin- _

. . . . Vo = 0.5 (9)
ear regression gives unbiased estimates only under the
assumption that the regression variable is known exWsing this insight we can identify the two segments
actly, the regression parameters are constant and the gxresented in Figs 4a and 5a by re-grouping the data
ror on the dependent variable is zero mean and normallggain, now intdwo classes of materials:
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Figure 2 Attenuation of longitudinal ultrasonic waves in the rods of pure metals: (a) Dependeacanof according to [1-4]; (b) Dependence of
Da on D/4. The straight line indicates the main slope (2). Its interceptli®. (c) Dependence afde/df on D/A. The straight line indicates the
main slope (1). Its intercept is1.

(1) those for which logyde/df > —1.5, and the smaller attenuations
(2) those for which logyde/df < —1.5.
vo=06+1% logA;=—-1+5% q=0.99

Of course, this type of grouping onsistentvith the (10)
earlier representations, given in Figs 1-3. These showind for the larger,
that in the materials of the second group the attenuation
itself is very low; their generalized material constént vo=0.6+5%, logAy=1+5%, q=0.99. (11)
is very small. Note that the materials in question are
the NiMoV steel used in [47], martensitic and bainitic The above correlation coefficients are higher than in
steels used in [12], and aluminum and magnesium use(). The values ofg are close to (9), particularly, if it
in [1-4]. The fact that different authors produce similaris taken into the account that the estimates of standard
results for magnesium rods suggests that we are dealirggviation in parameters are sensitive to error distribu-
with genuine differences in material properties rathettion and thus, are not very reliable (they also deteriorate
than differences in experimental procedure. with decreasing number of observations). The fact that

Finally, the visual inspection of Figs 1b, 2b and 3bthe differences in the generalized material constant do
shows that not all the data in those classes are describedt appear large within each group may be explained
by the second power law, other regimes are present ds/ comparing (3) to (4). We can see that when using
well at lower and higher values ofle/df. Selecting the log-log scale, the last formula leads to halving of
those that are and performing the fitting, we obtain forthe differences in intercepts.
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Figure 3 Attenuation of shear ultrasonic waves in the rods of pure met-
als: (a) Dependence af on f according to [1-4]; (b) Dependence of
Da on D/x. The straight line indicates the main slope (2). Its intercept
is —1.2. (c) Dependence afde/df on D/A. The straight line indicates
the main slope (1). Its interceptisl.
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-50 -40 -30 -20 -1.0 0.0
log Da

@)

log vdo /df

] 1 ] I ]
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(b)

Figure 4 Dependence afda/d f on D« for longitudinal waves in metal
rods: (a) The slope of the straight lines is 0.5 and the intercepts@Ege

and 0.5 respectively: (b) The slope of the straight line is 0.75 and the
intercept is 0.8. The correlation co-effieciengis= 0.8.

There is an interesting analogy with the fracture me-
chanics: It has been known for a long time that for any
given material the family of curves describing the rela-
tionship between the length of fractut@nd the num-
ber of loading cycle®l which is parameterized with the
maximum magnitude of cyclic loagmay be re-plotted
as one universal graph or master curve when variables
d¢/dN and intensity factonK = o+/¢ are used (see
Fig. 6). It transpires that in both fracture mechanics
and ultrasonic inspection, a universal representation is
achieved by plotting a “kinetic” variable which repre-
sents the rate of change of the main measured quantity
(d¢/N or dx/dA~! respectively) versus the product of
a power of the main measured quantity’¢ or « re-
spectively) and a parameter which is specific to the
experiment ¢ or D respectively). In both situations
major portions of the master curve are well described
by power-type laws. Most applications in fracture me-
chanics rely on the kinetic diagram with ordpema-

jor linear portion. Similarly to our case, the presence
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Figure 5 Dependence ofdx/df on D« for shear waves in the metal
rods. (a) The slope of the straight lines is 0.5 and the intercepts@ge

and 0.5 respectively; (b) The slope of the straight line is 0.75 and the
intercept is 0.9. The correlation coeffiecientjis- 0.9.
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of two such portions becomes apparent only on testing

a large number of samples and statistical data analysis ! | 1 ! 1

supported by analysis of damage mechanisms [50]. 50 -40 -3.0 -20 -1.0 0.0
To conclude, most of the( f, D) data from the orig- log Dex

inal three classes can be described by using just two

straight lines, one for higher attenuation per unit fre-Figure 7 Dependence afde/d f on D« for longitudinal waves in metal

quency, and one for lower. It is quite clear that the dataods, with indication of other possible regimes.

points which have been obtained using the longitudi-

nal waves and which fall off these lines can be easily

identified from Figs 1b, 2b or 3b as belonging to other4- Practical application of the new approach

than the predominar® /A regimes. In Fig. 7 we present It is easy to see that given a rod of a polycrystalline

the fuller master curve which emphasizes the presenc@aterial andy( f) data covering a range of frequencies,

of more than just two major linear portions. Too few the master curve presented in Fig. 4a can be used to

data points have been obtained using the shear wawstablish the mean grain size of thl_s material. Indeed,

experiments to confirm that they are indeed more predll we have to do is apply the following procedure:

cise, and to check whether they also fall into different

D/x regimes. However, it is clear that the two straight 1. Assume speed of propagation (this is much less

segments represented in Figs 4a and 5a describe boskensitive to microstructure than attenuation). Assume

types of waves equally well. D=0.3 mm.
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2. Plotlogvde/d f vslogD« using the assumedval- logv de/df and is described by the following equation
ues ofv andD.

3. Establish whether the above plot contains the dd
portion, where the slope ig* = 2. 2 IOQUE +1

4. If yes, translate it horizontally to fit the master log Do =
curve; choose a point which lies on both the translated dd - dd

; 2logv— —1 iflogv— > —15.

plot and the master curve, and use the corresponding df df

vde/d f - anda-values to identify the mean grain size
D. (14)

, dd
Ifbgva?<:—15

Although it cannot be proven that all the new data will
that this procedure mav produce a verv hiah level ot%dways exhibit the same behavior it seems remarkable
P y P y g that practically all the data we could find do. This sug-

. _ 2004 rici 0
%ﬁg:ﬁgﬁggﬂi?éslghi?rﬁnrﬁé?g tomlogé’ r;OrL thegests_ that the above graph has immediate practical ap-
%hcatlons:

should not be taken into account, since as we mentione
above, these data appear to be consistent with the hy-

pothesis of Rayleigh’s scattering). Let us illustrate this (1) Its mdepe_ndenpe of the material is a novel and
by justifying the last figure. Indeed, comparing IC)r(_:‘dic_usefulfeature, since it does not appear feasible to estab-

tions based on the master curve to the measured valud |tri1olr112|IV:trtSé?1|J2triiihgdianelgezev(vah'llfzahblsezpﬁlr:;% tl?le tlrr?-
the maximum error in lo®P« is 9 ( ).

particular, different ratios between material constants
used in Table Il would produce different thresholds.

log(Da)predicted— 10g(Det)measurec™ 0.3, (12)  Thege might also vary with the minimum and maxi-

mum grain sizeDmin and Dimax-

Itis also easy to check by inspection of Figs 4a and 5

which implies that for an accurately measuredthe (2) It has been shown that the master curve may be
maximum relative error i is employed to estimate the mean grain sizeising ul-

trasonic attenuation measurements, without recourse to

Dpredicted 2 (13)  standard specimens or measurements of material con-

Dmeasured stants. The standard deviation in the mean grain size is

estimated to be 10-20%, rising to 100% at the lower
More accurate figures could be obtained if we hadmean grain sizes. Excessive|y h|gh (Over 1) or exces-
borrowing the neural networks terminology, a largersijvely low (under 0.001) values ¢fida/d f | would in-
training and a large testing set. Thus, our accuracy iglicate that the procedure does not have to give reliable
comparable with that reported in [51] - without having resylts.
to adhere to the Rayleigh regime or choose a standard (3) The metallographic techniques for measurement
specimen (cf. [12]). In some cases the accuracy mayfthe mean grain size are a subject of much controversy.
be even as high as that reported in [52] where a muclrhe proposed graph might be used as an additional ar-
more elaborate schedule is advocated. We believe th@hment when Va”da‘[ing the meta”ographic measure-
in most cases it cannot deteriorate by much. Indeed, gents of this nature.
careful study of the data published in [53] shows that

our generalized material constants are very close to therom the fundamental point of view our results appear
stochastic scattering factors. For example, the value f%teresting as well: The slope of the linear portions of
this factor for aluminum is 0.005, which is consistentihe master curve is consistent wibhx being propor-
with the corresponding intercept f1.6 in Fig. 2b.  tjonal to the second power @&/ for all materials but
Sim_ila_rly, forcopperthi_sfac_tor is abqut44times hi_gher,iron, even though the data lie in the parameter range
again in accordance with Fig. 2b. With the exception ofwhere Rayleigh’s scattering is expected. The frequent
Tungsten and lead, all other metals mentioned in [S3h¢ccurence of the second power law in steels has been
fall into the identified two groups. This leads us to be-poted in [17] before: it is remarked even in [2] that the
lieve that the majority of metals should be described byyata on aluminum with grain size 0.23 mm could be
our master curve well. By the same token if a specivitted rather well using the square law; and we have
men under test exhibits an excessively high (over 1) ogjiscovered a similar situation when working with ce-
excessively low (under 0.001) value fafde/d | this  ramics data [54]. However, the predominance of this
would indicate that using our master curve does Nofaw has never been spelled out before. The law can be
have to give reliable results. due to several different physical mechanisms, stochas-
tic scattering, a particular grain size distribution, dis-
location damping, molecular relaxation at a frequency
5. Conclusions above the experimental range, thermo-elastic loss etc.
It has been shown that practically all published ultra-Since most authors believe that in the megahertz regime
sonic data pertaining to attenuation of ultrasonic wavesbsorption effects are neglible, this narrows the prob-
in polycrystalline materials, both pure metals and al-lem down to the model of scattering or the grain size
loys, may be described by one master curve, an univedistribution which follows a power law (see the above-
sal piece-wise linear graph which represents a relationmentioned results obtained in [44, 45]). However, it
ship between two dimensionless variables,logand  seems unlikely that all grain distributions may be thus

4681



described. Moreover, the power-law distributions do 1.0
not automatically imply additional characteristic scales

and our results presented in Figs 1c, 2¢, and 3c sugges 54 |
that an extra spatial scale is involved.

Thus, it is likely that it is the multiple scattering in-
volving one extra spatial scale that prevails. The hypoth- 8 -1.0
esis is further confirmed by studying the data published g
in [53] and discussed at the end of the last section. Al- o .20 |-
though the formulas for the stochastic scattering factors ™
do not exhibit dependence on other scales, a weak de:
pendence of this nature is likely, say, if the assumption
(v) is relaxed and the correlation length characterizing
the autocorrelation function for the scattered field is 40
introduced. This is particularly plausible because the
stochastic scattering model often underestimates the L I
level of scatter by as much as a factor ofitdd). Un- -2.0 -1.0 0.0
fortunately, at present there appears to be no better that log D/A
the stochastic scattering model description of multiple
scattering by closely packed strong scatterers against
which our conclusion may be easily tested.

Finally, the fact that two different groups of data 1.0
emerge does not imply that there are no differences
within the groups, only that these differences are not

particularly pronounced. Indeed, we have shown that 0.0 T
comparing (3) to (4) and using the log-log scale, the last
formulaleads to halving of the differences inintercepts. 8 -1.0

The confirmation or refutation of the multiple scattering
h_ypothesis may be obtained o_nIy on carrying out a se- > 20
ries of carefully planned experiments, covering a wide ~
range of frequencies, materials and microstructures.

-
B
3
©
>

3.0 [
Appendix A -4.0 [
Let us briefly discuss our differentiation procedures.
As we have mentioned already, the difference be- I |
tween attenuations experienced at neighboring frequen- 2.0 1.0 0.0
cies is the main quantity measured in attenuation ex- log D/A

periments. However, this type of data are not easily
available, and the typical published curves represent
thea(f) dependence as in Figs 1a, 2a and 3a. Conse-
quently, numerical differencing procedures have been 1.0
employed to computeajdf. To establish robustness
of our results two such procedures have been tried: the
straightforward differencing and a more sophisticated
method based on the assumption & a monotoni-
cally increasing function of . This particular constraint
allows us to use a relatively fast optimization algorithm
developed in [55]. (1981) to fingk; 's which minimize

the following cost function

log vdao /df

N-1 N—1 2 N—1
=) |:ai+1—25anH(i —n):| +B2) " dad,s.
n=1 n=1

i=0

(A.1)
Here dig1= Y0 1 Aan= N A H (i —n);
Aap=ani1—an, H(j) is the discrete Heaviside -2.0 -1.0 0.0
function; >-°_, o =0; N is the number of available log D/A
discrete points and all the data are shifted, so that (c)
a1 =0. This algorithm is incorporated into our EDA _ , , , ,
I:,F|gure Al The rate of ultrasonic attenuatioda/d f as estimated using

(Exploratory Data Analysis) package as & DECOP . oecop witty? — 10-4, (b) DECOP withs? = 10, and (c) the finite-
subroutine (fOI" DECanqutlon with .POSItIV'e kernels). gifferencing technique. The key and parameters of the straight line as in
When the optimization procedure is carried out forrig. 1c.

¥
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each value of the frequency counter(de/df); is
estimated to bée; /5fi, whereéf; = fi 1 — fi. Thus,

even though the original algorithm has been developed®
16. E. M. LIFSHITSandG. D. PARKHOMOVSKII, Zh. Eksper.

for an evenly spaced discrete argument we can dedl
with the discrete function( f) for which the values

derivative corresponding to two different valuesgsf
are presented in Fig. Ala and b. It is clear that for
small values of8? which give more weighting to the

first, variance, term in (A.1) the result is practically 22.

indistinguishable from the one obtained using the

straightforward differencing (Fig. Alc). Larger values 2>

of p? give more weight to the second term in (A.1) 24
which is the Lo-norm of §«. In the main body of
the paper we choosg?=0.5 (see Fig. 1c) which
corresponds to mild smoothing of théf) curves. The
choice achieves a trade-off between two conflicting

tiation procedures; on the other hand, the dominant
slope is~1 (since it is~2 in Figs 1b, 2b and 3b).
Interestingly, the final estimates obtained using the twq
differentiation procedures differ mainly in their initial 5,
values, where as a rule, the measurement precision is
at its lowest and the beam spreading prevails. Other

differentiation procedures involving prior smoothing 33.

could be utilized, but it was not felt necessary to
. X . 3
introduce this extra degree of refinement.
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